gerbil.gif (3293 bytes)
directory: Animal Rights FAQ

Animals used in Laboratories

#77 What is wrong with experimentation on animals?

#78 Do AR people accept that vivisection has led to valuable medical advances?

#79 How can you justify losing medical advances that would save human lives by stopping vivisection?

#80 Aren't there instances where there are no alternatives to the use of animals?

#81 But what if animals also benefit, e.g., through advance of veterinary science?

#82 Should people refuse medical treatments obtained through vivisection?

#83 Farmers have to kill pests to protect our food supply. Given that, what's wrong with killing a few more rats for medical research?

#84 What about dissection; isn't it necessary for a complete education?

#85 What is wrong with product testing on animals?

#86 How do I know if a product has been tested on animals?

Additional topics: 
Testing -- Vivisection -- Taking drugs --          
 Drug Testing on Inmates

#77 What is wrong with experimentation on animals?

The claimed large gains from using animals in research makes the practice the most significant challenge to AR philosophy. While it is easy to dismiss meat production as a trivial indulgence of the taste buds, such a dismissal is not so easily accomplished for animal research.

First, a definition. We refer to as "vivisection" any use of animals in science or research that exploits and harms them. This definition acknowledges that there is some research using animals that is morally acceptable under AR philosophy (see question #80).

The case against vivisection is built upon three planks. They are:

PLANK A. Vivisection is immoral and should be abolished.

PLANK B. Abolition of vivisection is not antiscience or antiresearch.

PLANK C. The consequences of abolition are acceptable.

It is easy to misunderstand the AR philosophy regarding vivisection. Often, scientists will debate endlessly about the scientific validity of research, and sometimes AR people engage in those debates. Such issues are part of PLANK C, which asserts that much research is misleading, wrong, or misguided. However, the key to the AR position is PLANK A, which asserts an objection to vivisection on ethical grounds. We seek to reassure people about the effects abolition will have on future medical progress via PLANKS B and C.

In the material that follows, each piece of text is identified with a preceding tag such as [PLANK A]. The idea is to show how the text fragments fit into the overall case. There is some overlap between PLANKs B and C, so the assignment may look arbitrary in a few cases. --DG


Over 100 million animals are used in experiments worldwide every year. A few of the more egregious examples of vivisection may be enlightening for the uninformed (taken from R. Ryder's "Victims of Science"):

* Psychologists gave electric shocks to the feet of 1042 mice. They then caused convulsions by giving more intense shocks through cup-shaped electrodes applied to the animals' eyes or through spring clips attached to their ears.

* In Japan, starved rats with electrodes in their necks and electrodes in their eyeballs were forced to run in treadmills for four hours at a time.

* A group of 64 monkeys was addicted to drugs by automatic injection in their jugular veins. When the supply of drugs was abruptly withdrawn, some of the monkeys were observed to die in convulsions. Before dying, some monkeys plucked out all their hair or bit off their own fingers and toes.

Basic ethical objections to this type of "science" are presented here and in questions #79 and #85. Some technical objections are found in questions #78 and #80. Question #92 contains a list of books on vivisection; refer to them for further examples of the excesses of vivisection, as well as more detailed discussion of its technical merits.

VIVISECTION TREATS ANIMALS AS TOOLS. Vivisection effectively reduces sentient beings to the status of disposable tools, to be used and discarded for the benefit of others. This forgets that each animal has an inherent value, a value that does not rise and fall depending on the interests of others. Those doubting this should ponder the implications of their views for humans: would they support the breeding of human slaves for the exclusive use of experimenters?

VIVISECTION IS SPECIESIST. Most animal experimenters would not use nonconsenting humans in invasive research. In making this concession, they reveal the importance they attach to species membership, a biological line that is as morally relevant as that of race or gender, that is, not relevant at all.

VIVISECTION DEMEANS SCIENCE. Its barbaric practices are an insult to those who feel that science should provide humans with the opportunity to rise above the harsher laws of nature.

The words of Tom Regan summarize the feelings of many AR activists: "The laudatory achievements of science, including the many genuine benefits obtained for both humans and animals, do not justify the unjust means used to secure them. As in other cases, so in the present one, the rights view does not call for the cessation of scientific research. Such research should go on--but not at the expense of laboratory animals." --AECW

"Atrocities are not less atrocities when they occur in laboratories and are called medical research." --George Bernard Shaw (playwright, Nobel 1925)

Vivisection is the blackest of all the black crimes that a man is at present committing against God and his fair creation." --Mahatma Gandhi (statesman and philosopher)

What I think about vivisection is that if people admit that they have the right to take or endanger the life of living beings for the benefit of many, there will be no limit for their cruelty." --Leo Tolstoy (author)

"I am not interested to know whether vivisection produces results that are profitable to the human race or doesn't...The pain which it inflicts upon unconsenting animals is the basis of my enmity toward it, and it is to me sufficient justification of the enmity without looking further." --Mark Twain (author)

SEE ALSO: #78-#82, #85-#86

#78 Do AR people accept that vivisection has led to valuable medical advances?
   [PLANK A]

AR advocates generally believe that vivisection has played a contributing, if not necessarily essential, role in some valuable medical advances. However, AR philosophy asserts that the end does not justify the means, and that therefore the answer cannot decide the legitimacy of the stance against vivisection.


That said, many people, including former vivisectors and medical historians, will readily state that there is ample scientific and historical evidence showing that most vivisection is futile, and often harmful to those it pretends to serve.

On statistical grounds, vivisection does not deliver: despite the use of 144,000,000 animals in Britain since 1950, life-expectancy in Britain for the middle-aged has not changed since this date. Some 85 percent of the lab animals killed between the 1890s and the 1990s died after 1950, but the fall in death rate during these 100 years was 92 percent complete by 1950.

Consider, for a specific example, these figures for cancer:

Cancer type 1971-1975 1976-1980 % change

Bladder 118 123 + 4.2

Pancreas 118 125 + 5.9

Prostate 177 199 + 12.4

Stomach 298 278 - 6.7

Colorectal 311 320 + 2.9

Lung, Trachea, 1091 1125 + 3.1


[data for women excised for space reasons]

Gains in the war against cancer are sadly lacking, despite the vast numbers of animals sacrificed for cancer research.

When such analyses are performed across the spectrum of health issues, it becomes clear that, at best, the contribution of vivisection to our health must be considered quite modest. The dramatic declines in death rates for old killer diseases, such as, tuberculosis, pneumonia, typhoid, whooping cough, and cholera, came from improvements in housing, in working conditions, in the quantity and quality of food and water supplies, and in hygiene. Chemotherapy and immunization cannot logically be given much credit here, since they only became available, chronologically, after most of the declines were achieved.

Consider the particular example of penicillin: it was discovered accidentally by Fleming in 1928. He tested on rabbits, and when they failed to react (we now know that they excrete penicillin rapidly), he lost interest in his substance. Still, two scientists followed up on his work, successfully tried on mice and stated:

"...mice were tried in the initial toxicity tests because of their small size, but what a lucky chance it was, for in this respect man is like the mouse and not the guinea pig. If we had used guinea pigs exclusively we should have said that the penicillin was toxic, and we probably should not have proceeded to try to overcome the difficulties of producing the substance for trial in man."

Vivisection generally fails because:

* Human medicine cannot be based on veterinary medicine. This is because animals are different histologically, anatomically, genetically, immunologically, and physiologically.

* Animals and humans react differently to substances. For example, some drugs are carcinogenic in humans but not in animals, or vice-versa.

* Naturally occurring diseases (e.g., in patients) and artificially induced diseases (e.g., in lab animals) often differ substantially.

All this manifests itself in examples such as the one below:


Chemical Teratogen (i.e., causes birth defects)

yes no


aspirin rats, mice, monkeys, humans guinea pigs, cats, dogs

aminopterin humans monkeys

azathioprine rabbits rats

caffeine rats, mice rabbits

cortisone mice, rabbits rats

thalidomide humans rats, mice, hamsters

triamcilanone mice humans


There are countless examples, old and recent, of the misleading effects of vivisection, and there are countless statements from reputable scientists who see vivisection for what it is: bad science. Following are just a few of them. --AECW

"The uselessness of most of the animal models is less well-known. For example, the discovery of chemotherapeutic agents for the treatment of human cancer is widely heralded as a triumph due to use of animal model systems. However, here again, these exaggerated claims are coming from or are endorsed by the same people who get the federal dollars for animal research. There is little, if any, factual evidence that would support these claims. Indeed while conflicting animal results have often delayed and hampered advances in the war on cancer, they have never produced a single substantial advance in the prevention or treatment of human cancer. For instance, practically all of the chemotherapeutic agents which are of value in the treatment of human cancer were found in a clinical context rather than in animal studies." --Dr. Irwin Bross, 1981 Congressional testimony

Indeed even while these [clinical] studies were starting, warning voices were suggesting that data from research on animals could not be used to develop a treatment for human tumors." --British Medical Journal, 1982

Vivisection is barbaric, useless, and a hindrance to scientific progress." --Dr. Werner Hartinger, Chief Surgeon, West Germany, 1988

...many vivisectors still claim that what they do helps save human lives. They are lying. The truth is that animal experiments kill people, and animal researchers are responsible for the deaths of thousands of men, women and children every year." --Dr. Vernon Coleman, Fellow of the Royal Society of Medicine, UK

#79 How can you justify losing medical advances that would save human lives by stopping vivisection?


The same way we justify not performing forcible research on unwilling humans! A lot of even more relevant information is currently foregone owing to our strictures against human experimentation. If life-saving medical advances are to be sought at all cost, why should nonhuman animals be singled out for ill-treatment? We must accept that there is such a thing as "ill-gotten gains", and that the potential fruits of vivisection qualify as such.

This question might be regarded as a veiled insult to the creativity and resourcefulness of scientists. Although humans have never set foot on Pluto, scientists have still garnered a lot of valuable scientific information concerning it. Why couldn't such feats of ingenuity be repeated in other fields? --AECW


Forcible experimentation on humans is not the only alternative. Many humans would be glad to participate in experiments that offer the hope of a cure for their afflictions, or for the afflictions of others. If individual choice were allowed, there might be no need for animal experimentation. The stumbling block is government regulations that forbid these choices. Similarly, government regulations are the reason many animals are sacrificed for product testing, often unnecessarily. --PM

SEE ALSO: #77-#78, #80-#82, #85-#86

It isn't feasible to stop using animals for basic medical research because of the need to observe the complex interactions of cells, tissues, and organs.

Besides the moral issues involved, clinical and epidemiological studies of humans offer a far more accurate picture without hurting anyone. Observing interactions in animals is no guarantee that the information can be extrapolated to humans. Different species of animals vary enormously in their reactions to toxins and diseases and in their metabolism of drugs. For example, a dose of aspirin that is therapeutic in humans is poisonous to cats and has no effect on fever in horses; benzene causes leukemia in humans but not in mice; insulin produces birth defects in animals but not in humans, and so on. Animal experiments cannot replace careful clinical observation of human beings.

If we couldn't use animals, wouldn't we have to test new drugs on people?

The choice isn't between animals and people. There's no guarantee that drugs are safe just because they've been tested on animals. Because of the physiological differences between humans and other animals, results from animal tests cannot be accurately extrapolated to humans, leaving us vulnerable to exposure to drugs that can cause serious side effects. Ironically, unfavorable animal test results do not prevent a drug from being marketed for human use. So much evidence has accumulated about differences in the effects chemicals have on animals and humans, that government officials often do not act on findings from animal studies. In the last two decades, many drugs, including phenacitin, Eferol, Oraflex, Suprol, and Selacryn, were taken off the market after causing hundreds of deaths and/or injuries. In fact, more than half the drugs the Food and Drug Administration approved between 1976 and 1985 were either removed from the market or relabeled because of serious side effects. If the pharmaceutical industry switched from animal experiments to quantum pharmacology and in vitro tests, we would have greater protection, not less.

#80 Aren't there instances where there are no alternatives to the use of animals?
   [PLANK A]

The reply to the question here is succinct: "If so, so what?". Let us recall that we are happy enough (today) to forego knowledge that would be acquired at the expense of commandeering humans into service, and that we include children, the mentally diminished and even people suffering from types of disease for which animal models are unsatisfactory (such as AIDS). That is, a prior ethical decision was made that rules them out from experimentation, and that foregoes any potential knowledge so derived.

Now the Animal Rights argument is consistent: since no morally relevant difference can be produced that separates humans spared experimentation from test animals (those that are subjects-of-a-life), vivisection is exposed as immoral, and the practice must be abandoned.

Just as the insights offered by the Nazis' experiments on concentration camp prisoners were morally illicit, so are any and all benefits traceable to vivisection. As Tom Regan put it: "Since, whatever our gains, they are ill-gotten, we must bring an end to [such] research, whatever our losses."


The argument above makes the search for alternatives morally imperative, and if it is objected that this "just isn't possible", one should reply that belittling the ingenuity of scientists will not do. There have been cases where alternatives to vivisection had to be sought, and--of course--they were found. For example, Sharpe writes in The Human Cost of Animal Experimentation: "Historically, a classic example is the conquest of yellow fever. In 1900, no animal was known to be susceptible, prompting studies with human volunteers which proved that mosquitoes did indeed transmit the disease. These observations led to improved sanitation and quarantine measures in Havana where yellow fever, once rife, was eradicated."


We now cite a few alternatives to animal models of human diseases. Two traditional types are: a) Clinical studies: these are essential for a thorough understanding of any disease. Anesthetics, artificial respiration, the stethoscope, electrocardiographs, blood pressure measurements, etc., resulted from careful clinical studies. b) Epidemiology studies: i.e., the study of diseases of whole populations. They, and not animal tests, have identified most of the substances known to cause cancer in humans. Typical example: Why is cancer of the colon so frequent in Europe and North America, infrequent in Japan, but common in Japanese immigrants to North America?

More recent technological advances now allow a host of other investigative methods to be applied, including:

* Tissue cultures: Human cells and tissues can be kept alive in cultures and used for biomedical research. Since human material is used, extrapolation problems are short-circuited. Such cultures have been used in cancer research by FDA scientists, for example, and according to them: "[they] offer the possibility of studying not only the biology of cancer cell growth and invasion into normal human tissue, but also provide a method for evaluating the effects of a variety of potentially important antitumor agents."

* Physico-chemical methods: For example, liquid chromatographs and mass spectrophotometers allow researchers to identify substances in biological substances. For example, a bioassay for vitamin D used to involve inducing rickets in rats and feeding them vitamin-D-rich substances. Now, liquid chromatography allows such bioassays to be conducted quicker and at reduced cost.

* Computer simulations: According to Dr. Walker at the University of Texas: "... computer simulations offer a wide range of advantages over live animal experiments in the physiology and pharmacology laboratory. These include: savings in animal procurement and housing costs; nearly  unlimited availability to meet student schedules; the opportunity to correct errors and repeat parts of the experiment performed incorrectly or misinterpreted; speed of operation and efficient use of students' time and consistency with knowledge learned elsewhere."

* Computer-aided drug design: Such methods have been used in cancer and sickle-cell anemia drug research, for example. Here, 3D computer graphics and the theoretical field of quantum pharmacology are combined to help in designing drugs according to required specifications.

* Mechanical models: For example, an artificial neck has been developed by General Motors for use in car-crash simulations. Indeed, the well-known "crash dummies" are much more accurate and effective than the primates previously employed.

This list is by no means exhaustive.


There are instances where the benefits of experimentation accrue directly to the individual concerned; for example, the trial of a new plastic heart may be proposed to someone suffering from heart disease, or a new surgical technique may be attempted to save a nonhuman animal. This may qualify, in the mind of the questioner, as an instance of use of animals. The position here is simple: The Animal Rights position does not condemn experimentation where it is conducted for the benefit of the individual patient. Clinical trials of new drugs, for example, often fall in this category, and so does some veterinary research, such as the clinical study of already sick animals. Another example of acceptable animal research is ethology, i.e. the study of animals in their natural habitat. --AECW


Following is a list of alternatives to much, if not all, vivisection:

* Cell, tissue, and organ cultures

* Clinical observation

* Human volunteers (sick and well)

* Autopsies

* Material from natural deaths  

* Noninvasive imaging in clinical settings

* Post-market surveillance

* Statistical inference

* Computer models

* Substitution with plants

These alternatives, and others not yet conceived, will ensure that scientific research will not come to a halt upon abolition of vivisection. --DG

If we didn't test on animals, how would we conduct medical research?

Human clinical and epidemiological studies, cadavers, and computer simulators are faster, more reliable, less expensive, and more humane than animal tests. Ingenious scientists have developed, from human brain cells, a model microbrain with which to study tumors, as well as artificial skin and bone marrow. We can now test irritancy on egg membranes, produce vaccines from cell cultures, and perform pregnancy tests using blood samples instead of killing rabbits.

Hasn't every major medical advance been attributable to experiments on animals?

Medical historians have shown that improved nutrition, sanitation, and other behavioral and environmental factors--not anything learned from animal experiments--are responsible for the decline in deaths since 1900 from the most common infectious diseases and that medicine has had little to do with increased life expectancy. Many of the most important advances in health are attributable to human studies, among them anesthesia; bacteriology; germ theory; the stethoscope; morphine; radium; penicillin; artificial respiration; antiseptics; the CAT, MRI, and PET scans; the discovery of the relationships between cholesterol and heart disease and between smoking and cancer; the development of x-rays; and the isolation of the virus that causes AIDS. Animal testing played no role in these and many other developments.

#81 But what if animals also benefit, e.g., through advance of veterinary science?
   [PLANK A]

The Animal Rights philosophy is species-neutral, so the arguments developed elsewhere in this section apply with equal force. The immorality of rights-violative practices is not attenuated by claiming that the victims and beneficiaries are of the same species. --AECW

#82 Should people refuse medical treatments obtained through vivisection?

Unfortunately, a number of things in our society came about through others' exploitation. For instance, many of the roads we drive on were built by slaves. We can't change the past; those who have already suffered and died are lost. But what we can do is change the future by using non-animal research methods from now on.


This is a favorite question for the defenders of vivisection. The implication is that the AR position is inconsistent or irrational because AR people partake of some fruits of vivisection.

As a first answer, we can point out that for existing treatments derived from vivisection, the damage has already been done. Nothing is gained by refusing the treatment. Vivisectors counter that the situation is analogous to our refusal to eat meat sold at the grocery; the damage has been done, so why not eat the meat? But there is a crucial difference. Knowledge is a permanent commodity; unlike meat, it is abstract, it doesn't rot. Consider a piece of knowledge obtained through vivisection. If vivisection were abolished, the knowledge could be used repeatedly without endorsing or further supporting vivisection. With meat consumption, the practice of slaughter must continue if the fruits are to continue to be enjoyed.

Another point is that, had the vivisection not occurred, the knowledge might well have been obtained through alternative, moral methods. Are we to permanently foreclose the use of an abstract piece of knowledge due to the past folly of a vivisector? The same cannot be said of meat; it cannot be obtained without slaughter.

If the reader finds this unpersuasive, she should consider that the AR movement sincerely wants to abolish vivisection, eliminating ill-gotten fruits. If this is achieved, the original question becomes moot, because there will be no such fruits. --DG


This is another "where should I draw the line" question, with the added twist that one's personal health may be on the line. As such, the right answer is likely to depend a good deal on personal circumstances and judgment. It is certainly beyond the call of duty to make an absolute pledge, since the principle of self-defense may ultimately apply (particularly in life-or death cases). Still, many people will be prepared to make statements against animal oppression, even at considerable cost to their well-being. For these, the following issues might be worth considering.


WHAT IS THE TRUE CONTRIBUTION OF ANIMAL EXPERIMENTATION TO THE DEVELOPMENT OF THE TREATMENT? Most treatments owe nothing to animal experimentation at all, or were developed in spite of animal experimentation rather than thanks to it.

Insulin is one good example. The really important discoveries did not proceed from the celebrated experiments of Banting and Best on dogs but from clinical discoveries: According to Dr. Sharpe: "The link between diabetes and the pancreas was first demonstrated by Thomas Cawley in 1788 when he examined a patient who had died from the disease. Further autopsies confirmed that diabetes is indeed linked with degeneration of the pancreas but, partly because physiologists, including the notorious Claude Bernard, had failed to produce a diabetic state in animals...the idea was not accepted for many years." One had to wait until 1889 for the link to be accepted, the date at which two researchers, Mering and Minkowski, managed to induce a form of diabetes in dogs by removing their entire pancreas. Autopsies further revealed that some parts of the pancreas of diabetics were damaged, giving birth to the idea that administering pancreatic extracts to patients might help.

Other examples of treatments owing nothing to vivisection include the heart drug digitalis, quinine (used against malaria), morphine (a pain killer), ether (an anesthetic), sulfanilimide (a diuretic), cortisone (used to relieve arthritic pains, for example), aspirin, fluoride (in toothpastes), etc.

Incidentally, some of these indisputably useful drugs would find it hard to pass these so-called animal safety tests. Insulin causes birth defects in chickens, rabbits, and mice but not in man; morphine sedates man but stimulates cats; doses of aspirin used in human therapeutics poison cats (and do nothing for fever in horses); the widespread use of digitalis was slowed down by confounding results from animal studies (and legitimized by clinical studies, as ever), and so on.

IS THE TREATMENT REALLY SAFE? The nefarious effects of many newly-developed, "safe" compounds often take some time to be acknowledged. For example, even serious side-effects can sometimes go under-reported. In the UK, only a dozen of the 3500 deaths eventually linked to the use of isoprenaline aerosol inhalers were reported by doctors. Similarly, it took 4 years for the side-effects of the heart drug Eraldine (which included eye damage) to be acknowledged. The use of these drugs were, evidently, approved following extensive animal testing.

WILL THE TREATMENT REALLY HELP? This question is not as incongruous as it may appear. A 1967 official enquiry suggested that one third of the most prescribed drugs in the UK were "undesirable preparations". Many new drugs provide no advantage over existing compounds: in 1977, the US FDA released a study of 1,935 drugs introduced up to April 1977 which suggested that 79.4 percent of them provided "little or no [therapeutic] gain". About 80 percent of new introductions in the UK are reformulations, or duplications of existing drugs. A 1980 survey by the Medicines Division of UK Department for Health and Social Security states : "[new drugs] have largely been introduced into therapeutic areas already heavily oversubscribed and...for conditions which are common, largely chronic and occur principally in the affluent Western society. Innovation is therefore largely directed toward commercial returns rather than therapeutic needs."


ARE THERE ALTERNATIVES TO THE TREATMENT? A better appreciation of the benefits of "alternative" practices has developed in recent years. Often, dietary or lifestyle changes can be effective treatments on their own. Adult-onset diabetes has been linked to obesity, for instance, and can often be cured simply by weight-loss and sensible dieting. Other types of alternative medicine, such as acupuncture, have proven useful in stress relief, and against insomnia and back pains.   --AECW


In modern society, I think it would be almost impossible NOT to use medical information gained through animal research at some stage--drug testing being the most obvious consideration--without opting out of health care altogether. It is important, therefore, that we emphasize the need to stop now. The past is irretrievable. --JK

#83 Farmers have to kill pests to protect our food supply. Given that, what's wrong with killing a few more rats for medical research?


First, we object to the casual attitude of the questioner to the killing of rights holders. A nonspeciesist philosophy, such as that of Animal Rights, sees that as no different from suggesting:

Humans are killed legitimately every day. Given that, what's wrong with killing a few more humans for medical research?

Hopefully, the reply is now obvious: in the original question, the fate of pests is an irrelevant consideration (here), and the case for the liberation of laboratory animals must be evaluated on its own. Seeking to dilute a number of immoral killings into a greater number of arguably defensible ones is a creative but illogical attempt at ethical reasoning. --AECW


#84 What about dissection; isn't it necessary for a complete education?

More and more medical students are becoming conscientious objectors, and many students now graduate without having used animals; instead, they learn by assisting experienced surgeons. In Great Britain, it is against the law for medical students to practice surgery on animals, and British physicians are as competent as those educated elsewhere. Many of the leading U.S. medical schools, including Harvard, Yale, and Stanford, now use innovative clinical teaching methods instead of old-fashioned animal laboratories. Harvard, for instance, offers a Cardiac Anesthesia Practicum, where students observe human heart bypass operations instead of dog labs; the Harvard staff who developed it have recommended it be implemented at medical schools everywhere.


Dissection refers to the practice of performing exploratory surgery on animals (both killed and live) in an educational context. The average person's experience of this practice consists of dissecting a frog in a high-school biology class, but fetal chipmunks, mice, rabbits, dogs, cats, pigs, and other animals are also used.

Dissection accounts for the death of about 7 million animals per year. Many of these animals are bred in factory-farm conditions. Others are taken from their natural habitats. Often, strayed companion animals end up in the hands of dissectors. These animals suffer from inhumane confinement and transport, and are finally killed by means of gassing, neck-snapping, and other "inexpensive" methods.

The practice of dissection is repulsive to many students and high-schoolers have begun to speak out against it. Some have even engaged in litigation (and won!) to assert a right to not participate in such unnecessary cruelty. California has a law giving students (through high school) the right to refuse dissection. The law requires an alternative to be offered and that the student suffer no sanctions for exercising this right.

Having dealt with the sub-question "What is dissection?", let's consider whether it is necessary for a complete education.


There are several very effective alternatives to dissection. In some cases, these alternatives are more effective than dissection itself. Larger-than-life models, films and videos, and computer simulations are all viable methods of teaching biological principles. The latter option, computer simulation, has the advantage of offering an additional interactive facility that has shown great value in other educational contexts. These alternative methods are often cheaper than the traditional practice of dissection. A computer program can be used indefinitely for a one-time purchase cost; the practice of dissection presents an ongoing expense.

In view of these effective alternatives, and the economic gains associated therewith, the practice of dissection begins to look more and more like a rite of passage into the world of animal abuse, almost a fraternity initiation for future vivisectors. This practice desensitizes students to animal suffering and teaches them that animals can be used and discarded without respect for their lives. Is this the kind of lesson we want to teach our children? --JLS/DG


Dissecting animals is often described as necessary for the complete education of surgeons. This is nonsense. Numerous surgeons have stated that practicing on animals does not provide adequate skills for human surgery. For example, dogs are the favorite test animal of surgery students, yet their body shape is different, the internal arrangement of their organs is different, the elasticity of their tissues under the scalpel is different, and postoperative effects are different (they are less prone to infection, for one thing). Also, many surgeons have suggested that practicing on animals may induce in the mind of the student a casual attitude to suffering.

Following are the thoughts of several prestigious surgeons on this issue. --AECW

"...wounds of animals are so different from those of [humans] that the conclusions of vivisection are absolutely worthless. They have done far more harm than good in surgery." --Lawson Tait

Any person who had to endure certain experiments carried out on animals which perish slowly in the laboratories would regard death by burning at the stake as a happy deliverance. Like every one else in my profession, I used to be of the opinion that we owe nearly all our knowledge of medical and surgical science to animal experiments. Today I know that precisely the opposite is the case. In surgery especially, they are of no help to the practitioner, indeed he is often led astray by them." --Professor Bigelow

...the aim should be to train the surgeon using human patients by moving gradually from stage to stage of difficulty and explicitly rejecting the acquisition of skills by practicing on animals...which is useless and dangerous in the training of a thoracic surgeon." --Professor R. J. Belcher

Practice on dogs probably makes a good veterinarian, if that is the kind of practitioner you want for your family." --William Held
   "Animal life, somber mystery. All nature protests against the barbarity of man, who misapprehends, who humiliates, who tortures his inferior brethren." --Jules Michelet (historian)

Mutilating animals and calling it 'science' condemns the human species to moral and intellectual hell...this hideous Dark Age of the mindless torture of animals must be overcome." --Grace Slick (musician)

SEE ALSO: #77-#81, #92

#85 What is wrong with product testing on animals?


The practice of product testing on animals treats animals as discardable and renewable resources, as replaceable clones with no individual lives, no interests, and no aspirations of their own. It callously enlists hapless creatures into the service of humans. It assumes that the risks incurred by one class of individuals can be forcibly transferred onto another.

Product testing is also unbelievably cruel. One notorious method of testing is the Draize irritancy test, in which potentially harmful products are dripped into the eyes of test animals (usually rabbits). The harmfulness of the product is then (subjectively) assessed depending on the size of the area injured, the opacity of the cornea, and the degree of redness, swelling and discharge of the conjunctivae, and in more severe cases, on the blistering or gross destruction of the cornea.


The use of animals in medicine is often challenged on scientific grounds, and product tests are no exception. For example, one widely used test is the so-called LD50 (Lethal Dose 50 percent) test. The toxicity level of a product is assessed by force-feeding it to a number of animals until 50 percent of them die. Death may come after a few days or weeks, and is often preceded by convulsions, vomiting, breathing difficulties, and more. Often, this test reveals nothing at all; animals die simply because of the volume of product administered, through the rupture of internal organs.

How such savage practices could provide any useful data is a mystery, and not just to AR activists. It is seen as dubious by many toxicologists, and even by some Government advisers. Animal models often produce misleading results, or produce no useful results at all, and product testing is no exception. One toxicologist writes: "It is surely time, therefore, that we ceased to use as an index of the toxic action of food additives the LD50 value, which is imprecise (varying considerably with different species, with different strains of the same species, with sex, with nutritional status, environmental status, and even with the concentration at which the substance is administered) and which is valueless in the planning of further studies."


The truth is that animal lives could be spared in many ways. For example, duplication of experiments could be avoided by setting up databases of results. Also, a host of humane alternatives to such tests are already available, and the considerable sums spent on breeding or keeping test animals could be usefully redirected into researching new ones. --AECW

"The animal rights view calls for the abolition of all animal toxicity tests. Animals are not our tasters. We are not their kings." --Tom Regan (philosopher and AR activist)


#86 How do I know if a product has been tested on animals?

There are two easy ways to determine whether a product uses animal products or is tested on animals. First, most companies provide a toll-free telephone number for inquiring about their products. This is the most reliable method for obtaining up-to-date information. Second, several excellent guides are available that provide listings of companies and products. The section entitled "Guides, Handbooks, and Reference" in question #92 lists several excellent guides to cruelty-free shopping. For maximum convenience, you can obtain a wallet-sized listing from PETA. Send a stamped, self-addressed envelope with your request for the "PETA Cruelty-Free Shopping Guide" to PETA, P.O. Box 42516, Washington, DC 20015.

Another thing to think about is the possibility of avoiding products by making safe, ecologically sound alternative products yourself! Several of the guides described in question #92 explain how to do this. --DG

SEE ALSO: #85, #92

Fair Use Notice and Disclaimer
Send questions or comments about this web site to Ann Berlin, [email protected]