Do fish have nociceptors: Evidence for the evolution of a vertebrate sensory system

Lynne U. Sneddon*†, Victoria A. Braithwaite+ & Michael J. Gentle*

*Roslin Institute, Welfare Biology, Roslin, Midlothian, EH25 9PS UK
† Division of Biological Sciences, Ashworth Laboratories, University of Edinburgh, EH9 3JT UK

Nociception is the detection of a noxious, tissue damaging stimulus and is sometimes accompanied by a reflex response such as withdrawal. Pain perception, as distinct from nociception, has been demonstrated in birds and mammals but has not been systematically studied in lower vertebrates. We assessed whether a fish possessed cutaneous nociceptors capable of detecting noxious stimuli and if their behaviour was sufficiently adversely affected by administration of a noxious stimulus.

Electrophysiological recordings from trigeminal nerves identified polymodal nociceptors on the head of the trout with physiological properties similar to those described in higher vertebrates. These receptors responded to mechanical pressure, temperatures in the noxious range (>40°C) and 1% acetic acid, a noxious substance. In higher vertebrates nociceptive nerves are either A-delta or C fibres with C fibres being the predominating fibre type. However, in the rainbow trout A-delta fibres were most common and this offers insights into the evolution of nociceptive systems. Administration of noxious substances to the lips of the trout affected both physiology and behaviour of the animal
and resulted in a significant increase in opercular beat rate and the time taken to resume feeding, as well as anomalous behaviours. This study provides significant evidence of nociception in teleost fish and furthermore demonstrates that behaviour and physiology are affected over a prolonged period of time suggesting discomfort.

Key-words: Nociception; pain; rainbow trout; trigeminal

Running title: Nociception in fish

1. INTRODUCTION

Nociception, the detection of tissue damaging stimuli, is evident in a number of different phyla including birds and mammals (Walters 1996) but studies on lower vertebrates have suggested a lack of nociceptors and pain perception (e.g. Atlantic stingray (*Dasyatis sabina*), Coggeshall *et al.* 1977; Leonard 1985; long-tailed stingray (*Himantura fai*), Snow *et al.* 1993). From the perspective of the evolution of sensory function in vertebrates, the study of sensory systems in lower vertebrates is of great interest. Olfactory, gustatory and chemosensory systems have been well described in fish (*Belousova et al.* 1983; Kotrschal 2000) but relatively little attention has been paid to nociception. The trigeminal nerve, the fifth cranial nerve, innervates the majority of sensory information from the head of vertebrates and as such conveys somatosensory information from potentially damaging stimuli to the brain. A study on the most primitive living vertebrate, the lamprey (*Petromyzon marinus*), suggested that there were trigeminal receptors that responded to burning of the skin (Matthews & Wickelgren 1978). The physiological responses of these receptors, however, were not well characterized and the responses recorded may have been a result of damage to the

1 Current address: University of Liverpool, School of Biological Sciences, BioScience Building, Liverpool L69 3BX, UK. Tel. +44 151 795 4456; Fax +44 151 795 4431; E-mail: lsneddon@liverpool.ac.uk
receptor field rather than the preferential sensitivity to a noxious temperature per se. Furthermore, the lamprey lacks myelination, yet its closest evolutionary group, the elasmobranchs, are deficient in unmyelinated fibres and no nociceptors have been identified (Leonard 1985; Snow et al. 1993). A recent study on the rainbow trout (Oncorhynchus mykiss) demonstrated that, although most primary afferent somatosensory fibres were A-delta fibres, unmyelinated C fibres were present in the trigeminal nerve (Sneddon 2002). Free nerve endings of A-delta and C fibres act as nociceptors in higher vertebrates and have been well characterised (Lynn 1994) and thus there is the potential for these neurons to act as nociceptors in the rainbow trout.

A number of different classes of nociceptors have been described in mammals but they are commonly slowly adapting mechanoreceptors that preferentially respond to noxious heat (greater than 40°C) and are termed mechanothermal nociceptors (Lynn 1994). If these nociceptors also respond to noxious chemicals such as bee venom, acid, bradykinins, acetyl choline, then they are classified as polymodal nociceptors (Lynn 1994). Using electrophysiological techniques, nociceptors have been identified in amphibia (Spray 1976), birds (Gentle 1992; 1997; Gentle & Tilston 2000), mammals (Yeomans & Proudfit 1996) including primates (Kenshalo et al. 1989) and humans (Torebjörk & Hallin 1974; Hallin et al. 1981). Therefore, if we can demonstrate that the rainbow trout possesses the neural apparatus to detect noxious stimuli, then this confirms that the trout is capable of nociception, the simple detection and reflex response to a noxious stimulus (Kavaliers 1988; Bateson 1991). To suggest pain perception, it must be shown that any behavioural or physiological responses are not merely reflexive.
Pain in humans has been defined as an “unpleasant sensory and emotional experience associated with actual or potential tissue damage” (IASP 1979). It is impossible to truly know if an animal has an emotion since we cannot measure emotion directly. Therefore, emotion does not feature in the definition of pain in animals (Zimmerman 1986; Bateson 1991). What an animal “feels” is possibly nothing like the experience of humans with a more complex brain structure, however, the animal’s experience may be unpleasant or cause suffering and their discomfort is no less important in terms of biology or ethics. To examine possible pain perception in an animal, indirect measurements of behavioural and physiological responses to a potentially painful event are made and then we decide upon the evidence collected from the data as is routinely done in welfare studies (Bateson 1991; Broom 1991; Gentle 1992; Gonyou 1994; Bradshaw & Bateson 2000; Mason et al. 2001; Roughan & Flecknell 2001; Molony et al. 2002). If a noxious event has sufficiently adverse effects on behaviour and physiology in an animal and this experience is painful in humans, then it is likely to be painful in the animal.

In order to demonstrate that an animal is capable of pain perception, it must first perceive the adverse sensory stimulus and then react both physiologically (e.g. inflammation, cardiovascular changes) and behaviourally (move away from stimulus). However, to show that this is not simply a nociceptive reflex, it is necessary to show that the animal learns that the stimulus is associated with an unpleasant experience and avoids it. Certainly it has been demonstrated that fish can learn to avoid an adverse stimulus such as electric shock (Ehrensing et al. 1982) and hooking during angling (Beukema 1970a, b). Additionally, suffering or discomfort is implicated if the animal’s behaviour is
adversely affected (Zimmerman 1986). These criteria have been demonstrated in mammals (Roughan & Flecknell 2001), birds (Gentle 1992) and amphibians (Stevens 1992) but not in teleost fish.

The purpose of the present study was to determine if nociceptors were present in the trigeminal system on the head of the trout and to determine the physiological and behavioural consequences of prolonged noxious stimulation. Recordings were made from the trigeminal nerve to identify if nociceptors were present on the face and head of the trout. Behavioural and physiological responses of the fish to administration of acutely algogenic substances to the lips of the trout were assessed to examine if there was the potential for pain perception in this species. The criteria that must be met for animal pain are firstly, the demonstration of the sensory capability of detecting potentially painful stimuli, and secondly, the performance of adverse behavioural responses to a potentially painful event that are not simple reflexes.

2. METHODS

(a) Electrophysiological recordings from the trigeminal ganglion

Rainbow trout (750 ±100g, n = 10) were supplied by a commercial fish supplier. The fish were maintained as described in a previous study (Sneddon 2002). Trout were caught individually by netting and initially anaesthetized by immersion in MS 222 (50mg/l) to facilitate weighing and intraperitoneal injection of Saffan (0.3ml/100g; Schering-Plough Animal Health, Welwyn Garden City, UK). Once deep anaesthesia was achieved, the fish was placed into a stainless steel cradle cushioned with wet paper towel and held in position with Velcro straps. The fish had reached surgical, deep plane anaesthesia and were not
conscious and had to be ventilated by flushing fresh water over the gills by means of a tube held in place by a specially constructed mouth piece. Skin and bone were removed above the brain and then the olfactory and optic lobes and cerebellum were removed via a suction tube connected to a vacuum pump. This procedure is known as decerebration and renders the animal insentient since it is only left with a brain stem. To prevent muscular twitching Pavulon, a neuromuscular blocker (pancurorium bromide 2mg/ml), was injected intramuscularly (0.08ml/100g fish weight). Bone was removed to expose the trigeminal ganglion and the ganglion was desheathed and covered in paraffin to prevent moisture loss. Glass insulated tungsten microelectrodes (tip diameter 10µm) were used to record from afferent cell bodies. The extracellular action potentials were amplified using a NL100 head stage connected to a NL104 preamplifier (Neurolog System, Digitimer Ltd, UK). The signal was displayed on a storage oscilloscope (5113, Tektronix INC) and stored on a PC using a Micro 1401 interface and Spike 2 software (CED, UK).

Neural activity was recorded from single cells in the trigeminal ganglion following the application of stimuli to the head of the fish. A glass mechanical probe (0.1mm diameter) was lightly applied to the facial skin in order to locate a receptor field. Once located the mechanical threshold of the receptor was determined by applying von Frey hairs (0.1 – 15.0g at 0.1g intervals) to the receptor field. The diameter of the receptive field was measured to 0.1mm using Vernier calipers. The receptor was then tested for thermal and chemical sensitivity. A thermal stimulator was placed 1mm above the area of the receptor field so that it did not burn the skin and the stimulator raised the temperature to 58°C. Thermal sensitivity was determined by heating the skin at a rate of 1°C/s up to 58°C using a prefocussed quartz glass light bulb with built in reflector (A1231, 12v, 100w Wotan).
orientated vertical to the skin. If the receptor responded to the increase in temperature, the threshold was determined and the response had to be repeatable. Temperature was measured using a type K thermocouple placed in the centre of the bulb focus and was controlled by a feedback circuit. The skin temperature was held at 58°C for 10s after which it rapidly returned to normal. The temperature increase of 1°C/s allowed the threshold to be determined. To ascertain chemosensitivity, a drop of 1% acetic acid was placed onto the receptor field. The first 5ms after the addition of the drop was disregarded as this could be a response to the touch of the drop; a response to this noxious chemical stimulation was confirmed if the action potentials measured from mechanical and/or thermal stimulation of that receptor fired after this period. Again this response was repeatable. A drop of water was also placed onto the receptive field to act as a control stimulus. None of the receptors responded to this. Conduction velocities were obtained by placing silver wire stimulation electrodes onto the receptor field, and stimulating the receptor directly by an electrical pulse. This stimulated the fibre to produce an action potential and the conduction velocity was determined using the time that the action potential was recorded after the stimulus and the estimated distance travelled from the receptive field to the recording electrode in the trigeminal ganglion.

(*b*) **Behavioural responses to administration of algogenic substances**

Twenty rainbow trout (30-100g) were obtained from a commercial fish supplier, individually housed in rectangular tanks (45 x 25 x 35 cm) with a constant flow of water at 11±1°C and a feeding ring (10cm diameter) secured on the water surface at the same location in each tank. One half of the tank was covered by an opaque lid (22.5 x 25 cm) to
provide an area of shelter, whereas the other half had a transparent lid and this was where
the feeding ring was located. Each tank had a gravel substrate and was continuously aerated
via an airstone and tubing connected to an air pump. Each fish was trained twice daily, AM
and PM, to come to the ring to receive food pellets (TROUW Aquaculture, UK) in response
to a light cue above the tank (one test equals one trial; mean number of trials to learn = 10
±4). Once the fish had learned to feed at the ring by successfully performing 6 consecutive
trials they received 2 weeks further training to ensure that they were truly conditioned to the
light stimulus (i.e. responded to light only before food presentation and they had to perform
another 14 trials successfully to be included in the experiment). Fish were then assigned to 4
treatment groups:

Saline: 0.1ml sterile saline injected (25g needle and 1ml syringe) into frontal lips.
Venom: 0.1ml bee venom (1mg/ml sterile saline) injected into frontal lips.
Acid: 0.1ml acetic acid (0.1% in sterile saline) injected into frontal lips.
Control: fish handled but received no injection.

Acetic acid and bee venom were chosen since the protons of the acid stimulate
nociceptive nerves in mammals (Martinez et al. 1999) and frogs (Hamamoto et al. 2000)
and the venom has an inflammatory effect in mammals (Lariviere & Melzack 1996) and
both are known to be painful in humans. Before treatment the behaviour and opercular (gill)
beat rate were measured continuously for 15 minutes. Behaviours recorded were their
position in tank (under covered or exposed area) and swimming activity (direct movement of
fish more than one body length). Fish were then individually anaesthetised using benzocaine
(1.5ml (50mg/l ethanol)/l) and were carefully injected with the appropriate substance into
the upper and lower frontal lip or handled but not injected. The fish were in medium to deep
plane anaesthesia during this procedure and had lost all reflex activity and muscular control. Trout were placed back into their original tank and allowed 30 minutes to recover from the anaesthesia. Behaviour and opercular beat rate were recorded for 15 minutes and then the light switched on and food subsequently introduced to the tank. If the fish did not respond by swimming to the feeding ring to feed they were left for a further 30 minutes, then a further 15 minutes of observations were recorded and light cue and food given. This regime continued until the fish resumed feeding. All fish ingested food within approximately 4 hours. The time to perform the feeding ring task and resume feeding for the four groups was compared using one-way ANOVA. The percentage of time spent in the covered area for each fish in all four groups was determined before and after the treatment and compared using Mann Whitney U tests. Frequency of swimming activity was calculated for each fish in the experimental groups and before and after the treatment and also compared using Mann Whitney U tests.

In a second experiment, 6 rainbow trout were trained as described above however half of these were fed live red mosquito larvae instead of pellets to provide a softer foodstuff. All fish were injected with bee venom and assessed for behaviour and opercular beat rate as already described. The time to resume feeding on the two different diets was compared using a Kruskal Wallis test due to the low sample size, which was chosen for ethical reasons.

All the fish used in both experiments were held for a further 3 days and trained in the conditioning task twice a day. All fish continued to successfully perform the task and ingest food, therefore, there appeared to be no chronic effects on associative learning and
appetite. At the end of the 3 days, the trout were individually killed by overdose in anaesthetic.

3. RESULTS

(a) Characterisation of nociceptors

Fifty-eight receptors were located on the face and head of the rainbow trout. Twenty-two of these receptors could be classified as nociceptors (Fig. 1) since they responded to mechanical pressure by a slowly adapting firing pattern and were also stimulated by noxious heat stimulation (>40°C) and of these, 18 also responded to algogenic chemical stimulation (1% acetic acid; Fig. 2A, B, & C). The response of the receptors to mechanical, noxious thermal and chemical stimulation clearly characterizes them as polymodal nociceptors (Table 1). There were 4 receptors that did not respond to chemical stimulation and are classified as mechanothermal nociceptors. A third group of receptors (n = 6) responded to only mechanical and chemical stimulation, but without a detailed investigation of their physiological characteristics they cannot be classified as nociceptors at present and are referred to as mechanochemical receptors. A further 16 receptors gave a slowly adapting response to mechanical stimulation and another 14 receptors gave a rapidly adapting response, but none of these responded to thermal or chemical stimulation and are possibly pressure and touch receptors respectively (Sneddon 2003). The characteristics of the polymodal and mechanothermal nociceptors and the mechanochemical receptors are shown in Table 1. Mechanical thresholds of the three types ranged between 0.1 and 7.1g and conduction velocities were recorded between 0.97 and 8.5m/s. Out of all the polymodal nociceptors that were recorded from, only one was a
unmyelinated C fibre and the rest were A-delta. Thermal responses were only seen above
40°C and thresholds ranged from 40 to 58°C (Fig. 2B & D). The diameter of the receptor
field ranged from 1.6 to 9 x 1mm. Interestingly, we found no thermal receptors that
responded to temperature in the range of 20 to 40°C.

(b) Behavioural and physiological responses to acute noxious stimulation

Significant increases in opercular beat rate were found in all 4 groups after the
treatment (Control and Saline: approximately 52 beats/min to 70 beats/min) although the
Venom and Acid groups had greatly elevated rates after the treatment (approximately 52
beats/min before to 93 beats per min after treatment, Fig. 3A; F3,16 = 27.52, p <0.001).
This physiological effect was also coupled with profound effects on the fish’s behaviour.
It took Control and Saline fish approximately 80 minutes to begin ingesting food again
whereas Venom and Acid fish took approximately 170 minutes (Fig.3B, F3,16 = 7.29, p =
0.003). In addition to this, we performed the second experiment that tested whether the
fish would resume feeding more quickly if fed on a softer foodstuff but there was no
significant difference in the time to resume feeding (H = 0.05, p = 0. 827, d.f. = 1).

Activity levels were not affected by the treatment whether it was potentially
painful (W = 130.5, p = 0.057) or not (W = 107.0, p = 0.908; median frequency before =
0.356/min; after = 0.326/min) although there was a trend for the venom and acid injected
fish to reduce the amount of swimming activity (median frequency before = 0.935/min;
median frequency after = 0.265/min). Position in tank or use of the sheltered area was
also not affected by the noxious injections (W = 103, p = 0.910; median percentage time
spent under cover before = 53.3%; after = 55.8%) or the controls treatments (W = 106; p
Observations following acid and venom injection found that the fish performed anomalous behaviours after the treatment that were not seen in the Control or Saline groups; Acid and Venom fish performed “rocking” where the fish moved from side to side balancing on either pectoral fin whilst resting on the gravel (mean frequency 0.37/min for Venom group and 0.45/min for Acid group). The Acid group was also observed to rub their lips into the gravel and against the tank walls but the Venom group did not perform this behaviour.

4. DISCUSSION

The polymodal nociceptors found here in the trout have similar properties to those found in amphibians (Stevens 1992), birds (Gentle 1992; 1997) and mammals (Handwerker et al. 1987) including humans (Lynn 1994). Nociceptors, by definition, preferentially respond to noxious, injurious stimuli and this demonstrates that the rainbow trout is capable of nociception (Kavaliers 1988; Bateson 1991). Receptor diameter, thermal thresholds and mechanical responses are similar to those measured in higher vertebrate groups (Torebjörk & Hallin 1974; Spray 1976; Hallin et al. 1981; Kenshalo et al. 1989; Yeomans & Proudfit 1996; Gentle & Tilston 2000). Mechanical thresholds were lower than those found in humans; at least 0.6g is required for noxious stimulation in human skin (Lynn 1994) and many of the nociceptors on the fish skin were stimulated by 0.1g. This may be due to the more easily damaged nature of the fish skin and as such the nociceptors have lower thresholds. Similar thresholds were found in mammalian eye nociceptors (Belmonte & Gallar 1996) and so the fish nociceptors have mechanical thresholds comparable with those in the cornea of the eye.
None of the trigeminal receptors in this study were stimulated by temperatures in the range of 30 to 40°C. A number of studies have demonstrated a lack of thermal receptors in invertebrates and other lower vertebrates (Matthews & Wickelgren 1978; Leonard 1985; Walters 1996). This suggests that thermal receptors in the non-noxious range potentially evolved in vertebrate groups that lead a more terrestrial existence. These thermal receptors may have evolved in response to temperature fluctuations in the terrestrial environment. It is unlikely that the rainbow trout would come into contact with such high noxious heat as used in this study and this species inhabits waters below 25°C. The nociceptors of this fish respond only above 40°C and this is typical of nociceptors in higher vertebrates. This would suggest that either in the distant evolutionary past the animals encountered temperatures above 40°C or the response to such high temperatures may be a fundamental physiological mechanism or property of nociceptive nerve endings as has been demonstrated in rat cultured dorsal root ganglion neurons (Lyfenko et al. 2002). These dorsal root neurons would also not come into direct contact with noxious temperatures yet they are responsive only to temperatures in the noxious range. It would be interesting from a comparative point of view to assess nociceptive responses in a tropical fish species since they would encounter higher temperatures. The mechanochemical receptors did not respond to thermal stimulation and cannot be classified as nociceptors. Further work is required to test these receptors with a variety of chemicals to ascertain if these are simply chemoreceptors, or if they are nociceptive, they only respond to noxious chemicals.

Assessing the subjective experiences of animals plays an increasingly large role in animal welfare (Broom 1991; Gentle 1992; Dawkins 1998; Bradshaw & Bateson 2000;
Mason et al. 2001). To date, little attention has been paid to potential pain perception in fish. In our behavioural experiments, we trained fish to come to a feeding ring in response to a light cue and then assigned them to four treatment groups; three of these groups had either bee venom, acetic acid or saline injected into the lips and a fourth group was simply a handled control. After injection of algogenic substances, the resulting increase in opercular rate is similar to that recorded when trout are swimming at maximum speed (Altimiras & Larsen 2000) and much greater than the rate recorded after handling stress (increase to a maximum of 69 beats /min; Laitinen & Valtonen 1994). The Control and Saline groups showed similar increases in opercular beat rate to stressed fish (Laitinen & Valtonen 1994) and this is probably due to the handling and anaesthetic procedure. Respiratory changes have been demonstrated in mammals and humans enduring a nociceptive event (Kato et al. 2001) and so this dramatic rise in ventilation rate may be a physiological response to noxious stimulation in the rainbow trout.

The rainbow trout injected with acetic acid and bee venom performed anomalous behaviours that were not performed by the Saline or Control groups. Rocking behaviour was seen in both Venom and Acid treatment groups and this behaviour was performed only in the 1.5 hours after injection. This is reminiscent of the stereotypical rocking behaviour of primates that is believed to be an indicator of poor welfare and thought to be performed as a comfort behaviour (Gonyou 1994). The performance of anomalous behaviours usually occurs within a short time period after the occurrence of a painful event when the pain is most intense (Molony et al. 2002). Only the Acid group performed rubbing of the lips against the gravel and the sides of the tank. The act of rubbing an injured area to ameliorate the intensity of pain has been demonstrated in humans and in
mammals (Roveroni et al. 2001). Overall the administration of noxious substances had a negative affect on the fish’s behaviour. To our knowledge, the performance of these behaviours has not been observed in fish before. These behaviours may be indicative of discomfort and may have a potential use as indicators of pain or the occurrence of a noxious event in fish. However, in humans and other animals pain is a specific experience and each different type of pain may have different behavioural responses and may also be species specific (Kavaliers 1988). Therefore, further studies should target noxious stimulation of other areas of the fish body to assess whether the behaviours seen in this study are universal.

The Venom and Acid injected fish took approximately 3 hours to begin ingesting food whereas the Saline and Control groups took over approximately 1 hour. The Venom and Acid groups may be experiencing discomfort and so take longer to perform the task and resume feeding. This may be similar to guarding behaviour where an animal does not use a painful limb to prevent more pain and damage being caused to the affected area (Gentle 1992). Handling and anaesthesia are known to be stressful causing an elevation in respiration rate (Laitinen & Valtonen 1994) and would account for the delay in the Saline and Control groups to perform the conditioning task. Giving the noxiously stimulated trout softer foodstuff did not affect the time to begin feeding again. Therefore, it appears as if the rainbow trout does not feed when affected by the administration of a noxious agent to the lips and only resumes feeding when the behavioural and physiological effects subside.

Our results demonstrate that the rainbow trout possesses nociceptors that detect noxious stimuli and that both the behaviour and physiology of the rainbow trout are
adversely affected by stimuli known to be painful to humans. The behaviours shown by the trout after injection of a noxious stimulus are complex in nature and as such may not be simple reflexes. The performance of rocking behaviour and rubbing of the affected area, possible indicators of discomfort, suggests that higher processing is involved in the behavioural output and this is similar to some of the responses of higher vertebrates (Gonyou 1994; Roughan & Flecknell 2001) and man (Kato et al. 2001) to noxious stimuli. Other behavioural studies have shown that fish learn to avoid aversive, noxious events such as electric shock but fish that had morphine, an analgesic, administered failed to learn to avoid the electric shock (Ehrensing et al. 1982). Together, these electrophysiological and behavioural results show that the rainbow trout has a well developed nociceptive system. Previous anatomical studies have suggested marine elasmobranches do not have nociceptors (Leonard 1985; Snow et al. 1993). This may represent an evolutionary divergence between the teleost and elasmobranch lineages.

Interestingly, there is a higher percentage of A-delta fibres (25%) in the trigeminal nerve compared with C fibres (4%; Sneddon 2002) and the majority of nociceptors were recorded from A-delta fibres. Only one of the 18 nociceptors we recorded from had a conduction velocity in the range of C fibre velocity (0.97 m/s) and the rest were A-delta fibres. Studies in mammals have stressed the importance of C fibres in prolonged nociceptive stimulation since they act as polymodal nociceptors with A-delta fibres, being mechanothermal nociceptors, participating only in acute short-term responses usually to alert the nervous system to immediate injury (Matzner & Devor 1987; Lynn 1994; Gentle 1997). However, A-delta fibres predominate in the rainbow trout and the behavioural effects of a noxious stimulus, such as bee venom, were
prolonged over approximately 3 hours. Therefore, in teleosts, A-delta fibres potentially have a dual role in mediating reflex escape behaviour as well as prolonged noxious stimulation, whereas in higher vertebrates, C fibres may have evolved to become more numerous and have a more prominent function in prolonged noxious stimulation and inflammatory pain. More detailed electrophysiological recordings on A-delta fibres in the trout are necessary to confirm this hypothesis. Sneddon (2002) suggested that the higher proportion of C fibres in the higher vertebrates compared with the teleost was due to the advance onto land in evolution and the increased chance of injury due to gravity, extremes of temperature and noxious gases. The aquatic environment provides buoyancy, dilution of chemicals and a relatively stable thermal environment and so perhaps teleosts have not dedicated such a great amount of neural wiring to nociception as terrestrial vertebrates have.

The results of the present study demonstrate nociception and suggest that noxious stimulation in the rainbow trout has adverse behavioural and physiological effects. This fulfils the criteria for animal pain as stated in the introduction. Future work should examine the cognitive aspects of noxious stimulation to assess how important enduring a noxious, potentially painful event is to the mental well-being of this species.

We are grateful to BBSRC for funding (Grant No. 215/S11042). LUS wishes to thank Jon Banks, University of Manchester, for his advice on the electrophysiology.
REFERENCES

IASP (International Association for the Study of Pain) 1979 Pain 6, 249-252.

Figure Legends

Figure 1. Position on polymodal mechanoreceptors or nociceptors, mechanothermal receptors and mechanochemical receptors on the head and face of the rainbow trout, *Oncorynchus mykiss* (▲ = polymodal nociceptor; ○ = mechanothermal nociceptor; □ = mechanochemical receptor).

Figure 2. A polymodal nociceptor responding to mechanical (A), thermal (B) and chemical stimulation (C; 1% acetic acid). The receptor is slowly adapting to mechanical stimulation (A; ON indicates application of stimulus), has a thermal threshold of 58°C (B) and responds to application of a drop of acetic acid onto the receptive field (C). (D) A polymodal nociceptor with a thermal threshold of 42.3°C.

Figure 3. (A) Mean (±SEM) opercular beat rate of each treatment group 20 minutes before treatment and at each observation afterwards (Time 1 is 20 minutes before treatment; time 2 is 30 minutes after treatment and each time point after this is approximately 30 minutes apart). (B) The mean (±SEM) time taken for each fish in each treatment group to resume ingesting food after the treatment.
Table 1. Characteristics of the three types of receptors found on the head of the rainbow trout. Values shown are means ± s.e.

<table>
<thead>
<tr>
<th></th>
<th>Polymodal Nociceptors (n = 18)</th>
<th>Mechanothermal Nociceptors (n = 4)</th>
<th>Mechanochemical Receptors (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of Receptor (mm)</td>
<td>3.20 ±0.4</td>
<td>2.83 ±1.0</td>
<td>2.52 ±0.4</td>
</tr>
<tr>
<td>Mechanical Threshold (g)</td>
<td>0.83 ±0.4</td>
<td>0.1 ±0.0</td>
<td>0.78 ±0.53</td>
</tr>
<tr>
<td>Thermal Threshold (°C)</td>
<td>49.3 ±1.4</td>
<td>46.2 ±2.4</td>
<td>None</td>
</tr>
<tr>
<td>Acid Response</td>
<td>Yes</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Conduction Velocity (m/s)</td>
<td>3.96 ±0.4</td>
<td>3.71 ±0.5</td>
<td>4.28 ±0.1</td>
</tr>
</tbody>
</table>